High-dimensional learning of linear causal networks via inverse covariance estimation
نویسندگان
چکیده
We establish a new framework for statistical estimation of directed acyclic graphs (DAGs) when data are generated from a linear, possibly non-Gaussian structural equation model. Our framework consists of two parts: (1) inferring the moralized graph from the support of the inverse covariance matrix; and (2) selecting the best-scoring graph amongst DAGs that are consistent with the moralized graph. We show that when the error variances are known or estimated to close enough precision, the true DAG is the unique minimizer of the score computed using the reweighted squared `2-loss. Our population-level results have implications for the identifiability of linear SEMs when the error covariances are specified up to a constant multiple. On the statistical side, we establish rigorous conditions for highdimensional consistency of our two-part algorithm, defined in terms of a “gap” between the true DAG and the next best candidate. Finally, we demonstrate that dynamic programming may be used to select the optimal DAG in linear time when the treewidth of the moralized graph is bounded.
منابع مشابه
High Dimensional Inverse Covariance Matrix Estimation via Linear Programming
This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such “sparsity”. The proposed method can be computed using linear pro...
متن کاملA Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-Gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance...
متن کاملJoint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization
We consider the problem of learning a sparse regression model for predicting multiple related outputs given high-dimensional inputs, where related outputs are likely to share common relevant inputs. Most of the previous methods for learning structured sparsity assumed that the structure over the outputs is known a priori, and focused on designing regularization functions that encourage structur...
متن کاملHigh-dimensional Covariance Estimation Based On Gaussian Graphical Models
Undirected graphs are often used to describe high dimensional distributions. Under sparsity conditions, the graph can be estimated using l1-penalization methods. We propose and study the following method. We combine a multiple regression approach with ideas of thresholding and refitting: first we infer a sparse undirected graphical model structure via thresholding of each among many l1-norm pen...
متن کاملLearning convolution filters for inverse covariance estimation of neural network connectivity
We consider the problem of inferring direct neural network connections from Calcium imaging time series. Inverse covariance estimation has proven to be a fast and accurate method for learning macroand micro-scale network connectivity in the brain and in a recent Kaggle Connectomics competition inverse covariance was the main component of several top ten solutions, including our own and the winn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 15 شماره
صفحات -
تاریخ انتشار 2014